Kloosterman paths of prime powers moduli, II
01 janv. 2020·
,
·
0 min. de lecture
Guillaume Ricotta

Emmanuel Royer
Igor Shparlinski
Résumé
G. Ricotta and E. Royer (2018) have recently proved that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums $S\left(a,b;p^n\right)/p^{n/2}$ converge in law in the Banach space of complex-valued continuous function on $[0,1]$ to an explicit random Fourier series as $(a,b)$ varies over $\left(\mathbb{Z}/p^n\mathbb{Z}\right)^\times\times\left(\mathbb{Z}/p^n\mathbb{Z}\right)^\times$, $p$ tends to infinity among the odd prime numbers and $n\geq 2$ is a fixed integer. This is the analogue of the result obtained by E. Kowalski and W. Sawin (2016) in the prime moduli case. The purpose of this work is to prove a convergence law in this Banach space as only $a$ varies over $\left(\mathbb{Z}/p^n\mathbb{Z}\right)^\times$, $p$ tends to infinity among the odd prime numbers and $n\geq 31$ is a fixed integer.
Type
Publication
Bulletin de la Société Mathématique de France 148, No. 1, 173-188