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1. Introduction
1.1. Results
Let N denote the set of natural numbers and N* = N\ {0}. For n and j in N* we set

- Zdﬂ'
d|n

where d runs through the positive divisors of n. If n ¢ N* we set ;(n) = 0. Following
[27], for N € N* we define

Wy(n) = Z o1(m)or(n — Nm)
m<n/N

where m runs through the positive integers <n/N. We call Wy the convolution
of level N (of the divisor function). We present a method (introduced in [17]) to
compute some of these sums using quasimodular forms. We insist on the fact that
the only goal of this paper is to present a method and we recapitulate, in Table 1
some of the known results. We hope that some our results are new (see e.g. Theorem
1.3 and Proposition 1.13). The evaluations of Wy (n) for N € {1, 2, 3, 4} given in
[12] are elementary and the ones of Wi (n) for N € {5,...,9} are analytic in nature
and use the ideas of Ramanujan. Our evaluations are on algebraic nature.
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232 E. Royer

Table 1. Some previous computations of Wy.

Level N Who Where
1 Besge (Liouville), Glaisher, Ramanujan  [6, 11, 21]
2,3, 4 Huard, Ou, Spearman & Williams (12]
5,7 Lemire & Williams [18]
6 Alaca & Williams [5]
8 Williams (28]
9 Williams [27]
12 Alaca, Alaca & Williams 2]
16 Alaca, Alaca & Williams (1]
18 Alaca, Alaca & Williams [4]
24 Alaca, Alaca & Williams 3]

For N € [5,10], we denote by Ay n the unique cuspidal form spanning the cus-
pidal subspace of the modular forms of weight 4 on T'g(N) with Fourier expansion®
Ay n(z) = e*™# + O(e*™#). We define

27rinz
Ay n( E 74,N ( :

We also write

+ oo
A(Z) — g2imz H [1 _ 627rinz]24
n=1
+oo
= T(n)627rinz

Il
—

n

for the unique primitive form of weight 12 on SL(2,Z).

Theorem 1.1. Let n € N*, then

5
Win) = —203(n) — 501(n) + 1501 (n),
1 1 n 1 n 1 1 n
Wa(n) = 50'3 3 <§> — —710'1 — 1710'1 (5) + ﬂgl(n) + ﬂ0—1 <§>7
1 3 1 n 1 1 n
i fin o) i 3 0B
L

1 1 1
Wa(n) = 4—803(n) + 1673 (5) + 303 (%) — 1—6n01(n) — 3" <%>
+azo1(n) + gz (5
2471V T 7\ 1

2In this paper, “Fourier expansion” always means “Fourier expansion at the cusp oo”.
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For dimensional reasons, the forms Ay x are primitive forms for N € {5, ...
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,10}.

It follows that the arithmetic functions 74 x are multiplicative and satisfy the rela-
tion (1.2) (see below). Following [14], one obtains

Ays(2) = [A(2)A(52)]'°,

Aso(z) = [A(2)A(22)A(32)A(62)]/12,
Ays(z) = [A(22)A(42)]"/,

Aso(2) = [A(32)]'%,

whereas Ay7 and Ay 19 are not products of the A function. However, using
MAGMA [7] (see [26] for the algorithms based on the computation of the spectrum
of Hecke operators on modular symbols), one can compute their Fourier coefficients
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Table 2. First Fourier coefficients of Ay 7.

n 1 2 3 4 5 6 7 8 9 10 11
T7(n) 1 -1 -2 -7 16 2 =7 15 -23  —16 -8
n 12 13 14 15 16 17 18 19 20 21 22

Ta7(n) 14 28 7 =32 41 54 23 110 -—112 14 8

Table 3. First Fourier coefficients of Ay 10.

n 1 2 3 4 5 6 7 8 9 10 11
T4,10(n) 1 2 -8 4 5 —-16 -4 8 37 10 12
n 12 13 14 15 16 17 18 19 20 21 22

T4,10(n) —32 —58 —8 —40 16 66 74 —100 20 32 24

(see Tables 2 and 3).

Remark 1.2. The independent computation of W7 by Lemire and Williams [18]
implies that

Ay7(z) = [(A(z)2A(7z))1/3 + 13(A(2)A(72))/2 + 49(A(z)A(7z)2)1/3]1/3.
It is likely that, following [18] to evaluate Wi we could get an expression of Ay 1.

In each of our previous examples, we did not leave the field of rational numbers.
This might not happen, since the primitive forms do not necessarily have rational
coefficients. However, every evaluation will make use of totally real algebraic num-
bers for coefficients since the extension of Q by the Fourier coefficients of a primitive
form is finite and totally real [24, Proposition 1.3]. To illustrate that fact, we shall
evaluate the convolution sum of levels 11 and 13. The set of primitive modular forms
of weight 4 on T'g(11) has two elements. The coefficients of these two primitive forms
are in Q(t) where t is a root of X? — 2X — 2 (see Sec. 2.8 for the use of a method
founded in [29]). Each primitive form is determined by the beginning of its Fourier
expansion:

A471171(Z) _ eQ-rrz’z 4 (2 _ t)€4mlz 4 0(6671-71z)7

A4’11’2(2) _ e27riz + te47riz + 0(667riz).
We denote by 74,11 ,; the multiplicative function given by the Fourier coefficients of
Ay 11,3- The two primitive forms, and hence their Fourier coefficients, are conjugate
by t — 2 —t (see e.g. [9] for the general result and Sec. 2.8 for the special case
needed here).
Theorem 1.3. Let n € N*. Then

_ 5 ) + 605 (m\ 20443 ) o — 47
T 14647 1464 ° 4026 bt 4026

Ly ] nY L L
Y A R T A YR YREA ST

W11 (n)

11 Ta,11,2(n)
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Table 4. First Fourier coefficients of A4 11,1 where t2—-2t—2=0.

n 1 2 3 4 5
7'4’11,1(11) 1 —t+42 4t —5 —2t — 2 —8t+9
n 6 7 8 9 10
T4,11,1(n) 5t —18 4t +6 10t —16 =8t + 30 -9t + 34
n 11 12 13 14 15
T4,11,1(n) —11 —14t —6 20t + 20 —6t 44 12t — 109

Table 5. First Fourier coefficients of A4 13,2 where w2 —u—4=0.

n 1 2 3 4 5
74,13,2(n) 1 —u+1 3u+1 —u—3 —u—1

n 6 7 8 9 10
74,13,2(n) —u —11 —1lu+1 1lu —7 15u+ 10 u+3

n 11 12 13 14 15
7'4,13,2(71) —12u + 46 —13u — 15 —13 —u + 45 —Tu — 13

Remark 1.4. We have

2t + 43 ( )+2t—47 (n) = t 2t + 43 )| €@
_ n _— n) = tr - n .
1026 T4,11,1 1026 T4,11,2 Q(t)/Q 1026 T4,11,1

The set of primitive modular forms of weight 4 on I'g(13) has three elements.
One of them, we note Ay 137 has Fourier coefficients in Q. The two others, we
note Ay 132 and Ay 133, have Fourier coefficients in Q(u) where u is a root of
X? — X — 4. Each of these two primitive form is determined by the beginning of its
Fourier expansion:

Ag132(2) = ™% + (1 — u)e*™ + O(e5™7),
Ayss(z) = ™% 4 uel™* 4 O(57).
We denote by 7413, the multiplicative function given by the Fourier coefficients

of A4 13,4 The two primitive forms Ay 132 and Ay 123, and hence their Fourier
coefficients, are conjugate by ¢t +— 1 — ¢t (see e.g. [9]).

Theorem 1.5. Let n € N*. Then

1 169 n u—06 U+ 5
Wig(n) = —o3(n) + mag(ﬁ) + m7'4,13,2(n) ~ I3 T113,3(n)

Ly ] nY L el n
5o I N 13 ) T g T\ T 591 (13 )
Remark 1.6. We have

u—6 u—+5 u—06
149 7'4,13,2(n) - 149 7'4,13,3(71) ZtI‘Q(u)/Q [ 149 7'4,11,2(71)} € Q.
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The set of primitive modular forms of weight 4 on I'g(14) has two elements.
Both have coefficients in Q and we can distinguish them by the beginning of their
Fourier expansion:

Agia1(2) = 2™ 4 2647 1 O (57,
Aga2(z) = 2™ — 2645 1 O(57).
We denote by 74,14,; the multiplicative function given by the Fourier coefficients of

Ay 14,5 and give in Sec. 2.10 a method to compute these coefficients and get Tables 6
and 7.

Theorem 1.7. Let n € N*. Then
1 1 n 49 n 49 n 1
Wia(n) = 55578(0) + 15598 (5) *+ 5007 (?) + 1—50"3(&) ~ 56" (™)

) +ig(n)+ia ny_3 (n)_iT n
4"\ 14 2471 24"\ 12 ) ~ 350 %7 175 47\ 2

Remark 1.8. The fact that for each N € {12,16,18,24} there exists only one
primitive form of weight 4 over I'o(N) and at least one of weight 2 implies that
the only modular forms appearing in the evaluation of the corresponding Wy have
rational coefficients.

Our method, with the introduction of Dirichlet characters, also allows to recover
a second result of Williams [27, Theorem 1.2] which extended a result of Melfi [20,
Theorem 2, (7)]. This result is Theorem 1.9. For b € N* and a € {0,... ,b— 1}, we
define

Sla,bl(n) := Z o1(m)oi(n —m).

m=0
m=a (mod b)

Table 6. First Fourier coefficients of A4 14,1.

n 1 2 3 4 5 6 78 9 10 11
Taaaa(n) 12 -2 4 —12 -4 7 8§ —23 —24 48
n 12 13 14 15 16 17 18 19 20 21 22
T4041(n) -8 56 14 24 16 —114 —46 2 —48 —14 96

Table 7. First Fourier coefficients of Ay 14,2.

n 1 2 3 4 5 6 7 8 9 10 11
T4,14,2(n) 1 -2 8 4 —-14 —16 -7 -8 37 28 —28
n 12 13 14 15 16 17 18 19 20 21 22

ma42(n) 32 18 14 —112 16 74 —74 80 —56 —56 56
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We compute S|[i, 3] for i € {0,1,2}. Our result uses the primitive Dirichlet character
x3 defined by

0 ifn=0 (mod3)
x3(n) =<1 ifn=1 (mod 3)
-1 ifn=-1 (mod 3)

for all n € N*.

Theorem 1.9. Let n € N*, then

510,3](n) = %03(71) + %O’g (g) - gag<g> - inal(n) — noy (g) + %no’l <g)

+ 2—14[1 +(3In)]o1(n) + %874’9(71)’

ST 3(n) = 1305(n) + 15 x6(n)os(n) — 220 (g) n %03<g>

i B+ 1 (2) ¢ s (2)

1_87-4,9(77')7

S[2,3](n) = %Ug(n) - j—gxg(n)ag(n) _ %ag (g) + %03@)

_ %nm (n) + %Xs(n)nal(n) + %nal (g) B gX:z(n)nJl <g>

3 n 1 1
—g?’LO’l <§> + ﬂd(?)'n - 2)0’1(71) - 57—4,9(”);

where §(3n) is 1 if 3 divides n and 0 otherwise.

We next consider convolutions of different divisor sums and recover results of
Melfi [20, Theorem 2, (9, 10)] completed by Huard, Ou, Spearman and Williams
[12, Theorem 6] and Cheng and Williams [8]. We shall use the unique cuspidal form
Ag o spanning the cuspidal subspace of the modular forms of weight 8 on I'y(2) with
Fourier expansion Ag o(z) = e?™# + O(e?™#). Using [14], we have

Ago(z) = [A(z)A(Qz)]l/B.
We define

400 ‘
A&Q(Z) = Z 7'872(71)627‘—””.
n=1



238 E. Royer

This is again a primitive form, hence the arithmetic function 73 o is multiplicative
and satisfies the relation (1.2) (see below).

Theorem 1.10. Let n € N*. Then

- 7 1 1 1

kZ:OUl(k)UB(n —k) = %05(71) — gnag(n) + ﬂm(n) - 2740 o1(n),

> 01— 2)os(k) = 5505(n) + 1505 (g) s, (g)

k<n/2

3 oi(k)os(n —2k) = 41—805(n) + %505 (g) %nag(n)

k<n/2
1 1 n
2130 24001<§>
Moreover,
3" or(k)as(n k) = —=rs(n) — nos(n) + osln) + —or ()
P 126 12 24 504 ’
1 32 n 1
k;2 o1(k)os(n —2k) = mw(n) + 07177 (5) - ﬂnag)(n)

+i ()_,_i ny_ 1 (n)
247" T 50471\ 2 ) T 102782\

and

1 2 n 1 n
Z o1(n —2k)os(k) = m@(n) + HJ7<§> — g"os (5)

k<n/2
1 /n 1 1
to51% ( >+@ 1) = qog7e2(M):

In Theorem 1.10, the first and fourth identities are due to Ramanujan [21]. The
second and third ones are due to Huard, Ou, Spearman and Williams [12, Theorem
6]. The fifth and sixth ones are due to Cheng and Williams [8]. Some other identities
of the same type may be found in [8, 21].

Our method also allows to evaluate sums of Lahiri type

Sllaty ... ar),(b1,... ,bs), (N1,..., N.)](n)

ar mi my
= Y mm ”bl(ﬁl)"'”’”<ﬁ> (1.1)

(m1,...,my)EN"
mi+--+mer=n
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[15, 16] and [12, Sec. 3] where the a; are nonnegative integers, the N; are positive
integers and the b; are odd positive integers. To simplify the notations, we introduce

Sl(a, ... ar), (b1,...,b)](n) = S[(a1,...,ar), (b1,...,b.),(1,...,1)](n).

For example, we prove the following:

Theorem 1.11. Let n € N*. Then

S1(0,1,1),(1,1,1)](n) = %sgn os(n) — %ngag(n) + %rﬂag(n)
+ 9—16n401 (n) — 2L88n301 (n)

and
—2458[(0,0,0,1,1),(1,1,1,1,1)](n)

= —%TLQO'Q(TL) + 128n°a7(n) — 80na7(n) — 600nos(n)

+648n305(n) + &70871503(71) — 144n205(n)— 11§32n403(n) - @nﬁa (n)

+576n303(n) + %n‘rjol (n) — 432n*cy(n) — 48n203(n)

+48n301(n) + én7'(n) - éT(n)

35 35

The first identity of Theorem 1.11 is due to Lahiri [15, (5.9)] and an elementary
proof had been given by Huard, Ou, Spearman and Williams [12]. The second
identity is due to Lahiri [16].

We continue our evaluations by the more complicated sum S[(0,1), (1,1),(2,5)].
The reason why it is more difficult is that the underlying space of new cuspidal
modular forms has dimension 3.

The space of newforms of weight 6 on I'g(10) has dimension 3. Let {Ag 10,i }1<i<3
be the unique basis of primitive forms with

Ng.10.1(2) = ™% 4 4e?™% 4 65T 4 O(e37),

Ag.102(2) = €2™7 — 4ed™Z 4 24577 1 O(872),

Ag.10.3(2) = ™% — 4e?™E — 2657 4 O(577).
Again, by [14], we know that these functions are not products of the A function. We
denote by 76,10,;(n) the nth Fourier coefficient of Ag 19,;. Note that the sequences
T6,10,; are multiplicative. Again, Stein’s algorithms on MAGMA give the following

tables.
We also need the unique primitive form

+oo
A575(Z) _ Z T575(’I’L)627”nz
n=1
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Table 8. First Fourier coefficients of Ag,10,1-
n 1 2 3 4 5 6 7 8 9 10 11
76,10,1(n) 1 4 6 16 —25 24 —118 64  —207 —100 192
n 12 13 14 15 16 17 18 19 20 21 22
T6,10,1(n) 96 1106 —472 —150 256 762 —828 —2740 —400 —708 768
Table 9. First Fourier coefficients of Ag, 10,2.
n 1 2 3 4 5 6 7 8 9 10 11
7'6,10,2(”) 1 —4 24 16 25 —96 —172 —64 333 —100 132
n 12 13 14 15 16 17 18 19 20 21 22
7'6,10,2(”) 384 —946 688 600 256 —222 —1332 500 400 —4128 —528
Table 10. First Fourier coefficients of Ag 10,3.
n 1 2 3 4 5 6 7 8 9 10 11
76,10,3 (1) 1 —4 —26 16 —25 104 —22 —64 433 100 —768
n 12 13 14 15 16 17 18 19 20 21 22
76,10,3(n)  —416  —46 88 650 256 378 —1732 1100 —400 572 3072
Table 11. First Fourier coefficients of Ag 5.

n 1 2 3 4 5 6 7 8 9 10 11
m6,5(n) 1 2 -4 —28 25 -8 192 —120 —227 50  —148
n 12 13 14 15 16 17 18 19 20 21 22
T6,5(n) 112 286 384 —100 656 —1678 —454 1060 —700 —768 —296

of weight 6 on I'g(5). It is not a product of the A function, and its first Fourier
coeflicients are given in the following table.

Proposition 1.12. Let n € N*. Define

A(n) = Eno (n) + gnU n @na i —1200n0 i
T3l 1377°\ 2 13 7%\ 5 13 *\10)
48 n
B(n) = —Enzol <§> — 48n?0, <—>,
C(n) = 24no, <g>,
12 216 864
D(n) = gnr4710(n) Enmﬁ(n) gnmﬁ(g),
108 864 n
E(n) = 35 6,5(n) + §76,5(§>7
24 12
F(n) = —376,10,1(71) + 77'6,10,2(77/)-
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Table 12. First Fourier coefficients of Ag 5 1.

n 1 2 3 4 5 6 7 8 9
78,5,1(n) 1 —14 —48 68 125 672 —1644 840 117
n 10 11 12 13 14 15 16 17 18

78,5,1(n) —1750 172  —3264 3862 23016 —6000 —20464 —12254 —1638

Table 13. First Fourier coefficients of Ag 52 where t2 — 20t 4+ 24 = 0.

n 1 2 3 4 5
7'8,5,2(") 1 —t+ 20 8t — 70 —20t + 248 —125
n 6 7 8 9 10
7'8,5,2(") 70t — 1208 —56t 4+ 510 —120t 4+ 1920 160t + 1177 125t — 2500
n 11 12 13 14 15
7'8,5,2(") —400t + 6272 184t — 13520 608t — 4310 —510t + 8856 —1000t + 8750
Then

5x24> Y boy(a)or(b) = A(n) + B(n) + C(n) + D(n) + E(n) + F(n).

(a,b)EN*?
2a-+5b=n

We shall now evaluate S[(1,1), (1,1), (1,5)] since it constitutes an example leav-
ing the rational field. Let ¢ be one of the two roots of X2 — 20X + 24. There exist
three primitive forms of weight 8 on I'g(5) determined by the beginning of their
Fourier expansion:

A8,5,1(2) _ eQ-rrz'z _ 14647”'2 + O(eﬁﬂ'iz)’

Ags2(2) = e?m 4 (20 — t)64m‘z + O(eﬁﬂiz)’
Ag 5.3(2) = 2™ + te'™* 4 O(e5™%).

The function Ag 5 3 is obtained from Ag 5 2 by the conjugation (t — 20 —¢) of Q(¢)
on the Fourier coefficients. We denote by 73 5 ; the multiplicative function given by
the Fourier coefficients of Ag s ;.

Proposition 1.13. Let n € N*. Define

A(n) = i—gn%g(n) + %n% (g),

B(n) = —25—4n301(n) — 24n30, (%)’

C(n) = —%rﬂmﬁ(n),

D(n) = MT&&Q(”) + MT&%(”)-

475 475
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Then

5x24> > aboy(a)or(b) = A(n) + B(n) + C(n) + D(n).

(a,b)EN*?
a+5b=n

Remark 1.14. The two terms in the right-hand side of the definition of D(n) in
Proposition 1.13 being conjugate, we have

792 412t
D(n) = trou) /g {T78,572(n) €Q.

To stay in the field of rational numbers, we could have used the fundamental
fact that, for every even k > 0 and every integer N > 1, the space of cuspidal forms
of weight k on I'g(N) has a basis whose elements have a Fourier expansion with
integer coefficients [25, Theorem 3.52]. However, the coefficients of these Fourier
expansions are often not multiplicative: this is a good reason to leave Q.

Remark 1.15. If 7, is one of our 7 functions, its values are the Fourier coefficients
of a primitive form (of weight k on T'g(V) say). It therefore satisfies the following
multiplicativity relation

rmn) = S p(d)d'r (%)n (g) (1.2)

d|(m,n)
(d,N)=1

1.2. Method

Since our method is based on quasimodular forms (anticipated by Rankin [22] and
formally introduced by Kaneko and Zagier in [13]), we briefly recall the basics on
these functions, referring to [17, 19] for the details.

Define

To(N) = {(CC” 2) : (a,b,c,d) € Z*, ad — be = 1,N|c}

for all integers N > 1. In particular, I'g(1) is SL(2,Z). Denote by ¢ the Poincaré
upper half plane:
H ={ze€C: Smz> 0}
Definition 1.16. Let N € N, k € N* and s € N*. A holomorphic function
f: 0 —C

is a quasimodular form of weight k, depth s on I'g(IN) if there exist holomorphic
functions fo, f1,..., fs on 5 such that

i (E5) -3 ne(55) 03
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forall (¢4) € I'o(NN) and bounded by a positive power of (|z|?+1)/y. By convention,
the 0 function is a quasimodular form of depth 0 for each weight.

One can show [19, Lemma 119] that if f satisfies the quasimodularity condition
(1.3), then fs satisfies the modularity condition

(cz + d)f(kfzs)fs <ZZZ—_—:2> = fs(z)

for all (2 %) € Io(N). The growth condition on f implies that fs is a modular form
of weight k£ — 2s. Hence, if f is a quasimodular form of weight k£ and depth s, non
identically vanishing, then k is even and s < k/2.

A fundamental quasimodular form is the Eisenstein series of weight 2 defined
by

+oo ]
z)=1—24 g o1(n)e?™ =,
n=1

It is a quasimodular form of weight 2, depth 1 on I'g(1) (see e.g. [23, Chap. 7]).
We shall denote by M, ES[FO(N )] the space of quasimodular forms of weight k,
depth < s on I'g(N) and Mi[To(N)] = MEO[PO(N)] the space of modular forms of
weight k on T(V).
Our method for Theorem 1.1 is to remark that the function

Hy(z) = Ex(2 )Ez(NZ)
+oo

=1-24 Z [01 + 0 (;)} e2minF L 576 Z W (n)e2min=

n=1
is a quasimodular form of weight 4, depth 2 on T'o(N) that we linearize using the
following lemma.

Lemma 1.17. Let k > 2 even. Then

k/2-1
ME[00(N)] = @) D' Mi—ai[lo(N)] @ CD¥/?71 By,
=0
We have set
o 1d
C 2mdz’

Let {Bx}ren be the sequence of rational numbers defined by its exponential
generating function

OO
We shall use the Eisenstein series to express the basis we need:

Ek N =1- — ZO’k 1 27rinNz S Mk[Fo(N)]
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for all k € 2N* + 2, N € N*. If N = 1 we simplify by writing Ej := Ej n. For
weight 2 forms, we shall need

Bop(z) = ﬁ[bEg(bz) _ aBs(az)] € Ma[To(b)]

for all b > 1 and a | b.
Let x be a Dirichlet character. If f satisfies all of what is needed to be a quasi-
modular form except (1.3) being replaced by

ot (257) :x<d>§fi<z>(czjd>i,

then one says that f is a quasimodular form of weight &, depth s and character y

on I'o(N). We denote by MES[FO(N), x| the vector space of quasimodular forms of
weight k, depth < s and character xy on I'o(N). If x = xo is a principal character
of modulus dividing N, then MES[PO (N),x] = MES[PO (N)].

If f e MES[FO(N)], then f has a Fourier expansion with coefficients {f(n)}nen.
We define the twist of f by the Dirichlet character x as

+oo
Faxz) =" x(n)f(n)e* .
n=0

In [17, Proposition 9], we proved the following proposition:

Proposition 1.18. Let x be a primitive Dirichlet character of conductor m. Let
f be a quasimodular form of weight k and depth s on T'o(N). Then f ® x is a
quasimodular form of weight k, depth less than or equal to s and character x> on
Lo(lem(N, m?)).

Remark 1.19. The condition of primitivity of the character may be replaced by
the condition of non vanishing of its Gauss sum.

The proof of Theorem 1.9 follows from the linearization of Fs - Fy ® x3.
Theorems 1.10 and 1.11 follow from the linearization of derivatives of forms of
type E;jEj N.

1.3. Generalization of the results

For N > 1and k > 2, let A, be the set of triples (¢, ¢, ) such that 1 is a primitive
Dirichlet character of modulus L, ¢ is a primitive Dirichlet character of modulus
M and t is an integer such that tLM | N (and tLM # 1 if k = 2) with the extra
condition

é(n) = {1 N =1 vy, (1.4)

0 otherwise
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We write 1 for the primitive character of modulus 1 (the constant function n — 1).
We extend the definition of oy: for k£ and n in N* we set

o) = (4 ) otan

d|n

where d runs through the positive divisors of n. If n ¢ N* we set Jg’¢(n) =0.If M
is the modulus of the primitive character ¢, we define the sequence {B,f}keN by its

exponential generating function

M—1 sect ook
_ ¢
§¢(C)6Mt_1 ;)Bky
For any (¢, ¢,1) € A}, define
b 2k XX g o
E;%(2):=0(p=1)— 0 Z o (n)e ™"
k n=1
and
b, ;
E;f’t(z)(z) — E]il(tz) . if (k7wa¢) 7é (25171)
’ Ey " (z) —tEy " (tz) otherwise

where §(¢p = 1) is 1 if ¢ = 1 and 0 otherwise.
For N > 1 and k > 2 even, the set

{E;ff) (¢a¢at) € A}k\/,k}

is a basis for the orthogonal subspace (called Eisenstein subspace, the scalar product
being the Petersson one) of the cuspidal subspace Si[T'o(N)] of My[To(NN)] [10,
Chap. 4].

Moreover, by Atkin-Lehner—Li theory [10, Chap. 5], a basis for Si[T'o(N)] is

U aa(H;[To(M))
(d,M)eN*
dM|N

where oy i
ag: My[Lo(M)] — My [Lo(M)]
[z f(d2)]
and H}[[o(M)] is the set of primitive forms of weight k on T'g(M).

A corollary is the following generalisation of Theorems 1.1 and 1.10. If f is a

o~

modular form, we denote by {f(n)}nen the sequence of its Fourier coefficients.
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Proposition 1.20. Let N > 1. There exist scalars ay.¢.t, ar,d,r ond a such that,
for allm > 1, we have

Wy(n)= > awta;”(t)Jr > aw¢tnaf¢<t>+anal(n)

(¥,0,t)EAN 4 (.0, t) €AY o

f s el (G S S ()

(d,M)eN* feH;[To(M (d,M)eN* feH;[To(M
dM|N dM|N

i (n) + 1.(n
T\ N )
More generally, for any N > 1 and any even £ > 4, the arithmetic functions
By 1 n
n— Z o1(n—EkN)os_1(k) — ﬂal(n) ~ 550t-1 (N)
k<n/N
and
Bg n 1
n +— Z 01 Jz 1 n—kN) 2—€01(N>—ﬂ041(n)
k<n/N
are linear combinations of the sets of functions

U {n - ol (%)

(1/1,¢,t)614’;\7’['+2

(¥, ¢ 0)eAY ,

J U {7

(d,M)eN" feH;, ,[To(M)]
AM|N

~/n
U U {” —nf (3) }
(d,M)EN* fEH[To(M)]

dM|N

The same allows to generalize Theorem 1.9. If b > 1 is an integer, denote by
X (b) the set of Dirichlet characters of modulus b. By orthogonality, we have

a) Y x(m)ai(m)oi(n —m).

It follows that the function to be considered is now

5 X X@m-Bex

v K
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We restrict to b squarefree so that the Gauss sum associates to any character of
modulus b is non vanishing. For N > 1, let X(O) be the principal character of modulus
N. For x € X(b), we define A}, as A}, except we replace condition (1.4) by

0
6 = XV x-
Then, similarly to the Proposition 1.20, we have the following proposition:

Proposition 1.21. Let b > 1 squarefree and a € [0,b — 1] be integers. Then the
function

1
576t 1 @) +6(b | n— @) (n)

is a linear combination of the set of functions

U, Y, ()
)

n — Sla,bl(n) —

XEX (D) (¥,0,t)EAY 4

0,9, ()

XEX(b) (v, 9, t)EAY 5

~/n
U U U i)}
XEX (b) (d;il\]@)‘%N* feH; [FO(M),XES) x|

ULU U ()

XeX (b) (d, M)eN* FeH;[To(M),xPx]

{n = no1(n)}

where N is the least common multiple of 2 and b* and §(b | n—a) is 1 if n = a(mod b)
and 0 otherwise.

2. Convolution of Levels 3, 5, 6, 7, 8, 9, 10 and 11
2.1. Level 3
By Lemma 1.17, we have
M [To(3)] = My[To(3)] & DMa[To(3)] & CDEs.

The vector space My[I'g(3)] has dimension 2 and is spanned by the two linearly
independent forms E, and Ej 3. The vector space M3[[y(3)] has dimension 1 and
is spanned by ®; 3. Computing the first Fourier coefficients, we therefore find that

1 9
Hy = <o Ex + 15 Baa + 4D 5 + 4DE,. (2.1)
Comparing with the Fourier expansion in (2.1) leads to the corresponding result

in Theorem 1.1.
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2.2. Level 5
By Lemma 1.17, we have

M2[To(5)] = My[To(5)] & DM, [To(5)] & CDE.

The vector space My[I'o(5)] has dimension 3 and is spanned by the linearly inde-
pendent forms E4, Ey 5 and Ay 5. The vector space M2[[(5)] has dimension 1 and
is spanned by ®; 5. Computing the first Fourier coeflicients, we therefore find that

25 288 24 12
H :—E E —A —Dd —DEFE. 2.2
5 % 4+26 45 — o5 45+ — 5 1,5+ — 5 2. (2.2)

Comparing with the Fourier expansion in (2.2) leads to the corresponding result
in Theorem 1.1.

2.3. Level 6
By Lemma 1.17, we have

M*[Do(6)] = My[To(6)] & DM [T'o(6)] & CDEs.

The vector space My[['o(6)] has dimension 5 and is spanned by the five linearly
independent forms E4, Eyo ,Es3 Es¢ and Ay . The vector space Ms[[y(6)] has
dimension 3 and is spanned by the three linearly independent forms ®; 2, ®; 3 and
®3 6. Computing the first Fourier coefficients, we therefore find that

9 18 24
Hg = —E4 + E4 2+ E4 3 + E4 6 — A4’6 + 2D(I)1’3 + 3D(I)3’6 + 2DEFEs.

50 50
(2.3)

Comparing with the Fourier expansion in (2.3) leads to the corresponding result
in Theorem 1.1.

2.4. Level 7
By Lemma 1.17, we have

ME2[To(7)] = My[To(7)] & DM, [To(7)] & CDEs.

The vector space M4[I'o(7)] has dimension 3 and is spanned by the three linearly
independent forms Ey, E47 and Ay 7. The vector space M3[I'9(7)] has dimension
1 and is spanned by the form ®; 7. Computing the first Fourier coefficients, we
therefore find that

1 49 288 36 12
H;=—Ei+ —FEs7; — ——A —Do —DEs. 2.4
7 50 4+ 50 4,7 35 4,7+ - 1,7+ - 2 (2.4)
Comparing with the Fourier expansion in (2.4) leads to the corresponding result in
Theorem 1.1.



Convolution Sums of the Divisor Function 249

2.5. Level 8
By Lemma 1.17, we have

M [To(8)) = My[To(8)] & DMa[To(8)] & CDEs.

The vector space M4[['o(8)] has dimension 5 and is spanned by the five linearly
independent forms Ey, Ey 2, Es4, Eqs and Ayg. The vector space Mz[[(8)] has
dimension 3 and is spanned by the forms ®; 4, ®; 3 and

(1)1’472 = Z = (1)1’4(22).

Computing the first Fourier coefficients, we therefore find that

1 3 3 4 3
Hgs = —F E E E,g —9A Do DE 2.5
8= 20 4+80 4,+20 44—|-5 4,8 48-|-4 18+2 2. (2.5)

Comparing with the Fourier expansion in (2.5) leads to the corresponding result in
Theorem 1.1.

2.6. Level 9
By Lemma 1.17, we have

ME?[o(9)] = My[To(9)] @ DM3[To(9)] @ CDEs.

The vector space My[I'g(9)] has dimension 5 and is spanned by the five linearly

independent forms Ey, Ey ® x3, E43, Es9 and Ayg. The vector space Mz[I'9(9)]

has dimension 3 and is spanned by the forms ®; 3, ®13 ® x3 and ®; .
Computing the first Fourier coefficients, we therefore find that

9 32 16 4
Hy = %EAL 7 E4 ] E4 9— A4,9 + ?DCIH,Q + gDE% (2.6)

Comparing with the Fourier expansion in (2.6) leads to the corresponding result in
Theorem 1.1.

2.7. Level 10

By Lemma 1.17, we have
M=2To(10)] = My[Lo(10)] & DM>[To(10)] & CDE;.

The vector space M4[I'g(10)] has dimension 7 and is spanned by the seven linearly
independent forms Ey, Ei 2, Eui5, F110, As10, A5 and

A4’5’2 =Z = A4’5(22).

The vector space Ma[I'g(10)] has dimension 3 and is spanned by the forms @, 19,
®; 5 and

@17572 = Z (1)175(22).
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Computing the first Fourier coefficients, we therefore find that

1 2 5 10 24 432 1728
Hy = ﬁEz; + %EAL,Q + %E4,5 + EE4,10 — €A4,10 — EAM — EAM@
27 6
+ ED‘I)LH) + EDEQ- (2.7)

Comparison with the Fourier expansion in (2.7) leads to the corresponding result
in Theorem 1.1.

2.8. Level 11
By Lemma 1.17, we have
M2[o(11)] = My[To(11)] @& DM3[To(11)] & CDE;.

The vector space My[T'o(11)] has dimension 4 and is spanned by the four linearly
independent forms E4, Ey 11, A411,1 and Ay 11,2. Let F; be the parabolic form of
weight 4 and level 11 given by

Fl(Z) _ [A(Z)A(llz)]lm — elmiz _ g 0miz + 9p8miz + Rel0miz + 0(612771'2).

Let T5 be the Hecke operator given by

T, : Z f(m)GZﬂ'imz s Z Z dk1f<2d_r2n> 627rimz.

meZ meZ | deN
d|(m,2)
(d,11)=1

It sends a parabolic form of weight 4 and level 11 to another one. Let
Fy = TyFy = e27% 4 9elmiz _ 5e0miz _ 9p8miz | golomiz 4 ((pl2miz),
There exists A\; and Ay such that
Agpip=Fo+MF and Agq12 =Fo+ A F.
For j € {1,2}, it follows that
T111,;(2) =24+ A; and Tua1,;(4) = -2+ 2);.
Since Ay 11, is primitive, it satisfies (1.2) hence A3 — 2A; — 2 = 0. In other words
X2 -2X —2=(X —X\)(X — \2).

This provides a way to compute the Fourier coefficients of Ay 11,1 and Ay 11,2 from
the ones of A and proves that these coefficients live in Q(¢) where ¢ is a root of
X2 -2X —2.

The vector space M3[I'g(11)] has dimension 2 and is spanned by the form @1 11
and its unique primitive form

Ao 11 = [A(z)A(112)])/12.
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Table 14. First Fourier coefficients of Az 11.

n 1 2 3 4 5 6 7 8 9 10 11
on) 1 -2 -1 2 1 2 -2 0 -2 -2 1
n 12 13 14 15 16 17 18 19 20 21 22
Toai(n) -2 4 4 -1 -4 -2 4 0 2 2 -2

Table 15. First Fourier coefficients of Ay 13,1.

n 1 2 3 4 5 6 7 8 9 10 11
74,13,1(n) 1 -5 -7 17 -7 35 —13 —45 22 35 —26
n 12 13 14 15 16 17 18 19 20 21 22

Ta131(n) —119 13 65 49 89 77 —110 —126 —119 91 130

Computing the first Fourier coefficients, we therefore find that

1 121 192t + 4128 192¢ — 4512
Hyy = @Ezl + EEAL,M — TA4’11’1 + TA4’11’2
60 12
+—=D®q 11 + —DEs. (2.8)

11 11
Comparison with the Fourier expansion in (2.8) leads to Theorem 1.3.

2.9. Level 13
By Lemma 1.17, we have
M=2To(13)] = My[Lo(13)] & DMs[To(13)] & CDE;.

The vector space M4[T'(13)] has dimension 5 and is spanned by the five linearly in-
dependent forms Ey, Ey 13, Aa13,1, Aa 13,2 and Ay 13 3. The vector space Ma[T'o(13)]
has dimension 1 and is spanned by the form ®; ;3.

Computing the first Fourier coefficients, we therefore find that

1 169 288u — 1728 288u + 1440
Hi3 = 1—70E4 + 1_70E4’13 + TA4’13’2 — TA4,13,3
70 12
—D® —DEs. 2.
+13 1,13 + 13D E2 (2.9)

Comparison with the Fourier expansion in (2.9) leads to the Theorem 1.5.

2.10. Level 14
By Lemma 1.17, we have
M=2[T(14)] = My [To(14)] @ DM3[To(14)] & CDEs.

The vector space M4[T'o(14)] has dimension 8 and is spanned by the eight linearly
independent forms Ey, E4 2, Ei7, Ea14, Day,

F477722 zZ — A477(22),
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and the two primitive forms Ay 14,1 and Ay 14,2. Another basis of the subspace of
parabolic forms is Ay 7, Fy 7.2, A%M and Ay 14®1 14 where

Ao 14(z) i= [A(2)A(22)A(T2) A(142)] /4

is the unique primitive form of weight 2 on I'g(14). We echelonize this second basis
by defining

1 22 11 39 Tz Tz
J1 = _2_8A4,7 - 7F4,7,2 + 7A§’14 + §A274(I)1714 = 2™z O<€10 ),
13 1 3 13 ) )
Jo = ——A - F _A2 ZA0 4P —_ Amiz 19) 107iz ,
2 56047 + ZhaT2 + 752,14 + 5g 24P e + (e
_ 13 19 13 2 13 __ _bmiz 107miz
Js=ceBart o Fure — B8 - e Realra =T 4 O<€ :

13 6 3 13 Tz Tz
Jy = —%Azm - ?F4,7,2 + ?Ag,u + %AQACI)I,M =5 O<€10 >

‘We then have
Ayaaj = J1 +bjdo + ¢jJs + djJy.

From 7414,5(4) = 74,14,5(2)* we deduce d; = b5. Then, from 7414;(6) = 74,14,5(2)
Ta14,5(3) and 74,14,;(8) = 7Tu.14,;(2)74,14,;(4) we respectively deduce
2bj + bjCj + QCJ‘ = —4,
b} — b7+ 6b; +4dc; =8
i.e.
3

]‘3 12

and
(b — 2)(b; +2)(b5 + b; +8) = 0.
Since the coefficients of Ay 14 ; are all totally real, we must have

Agiaq =1 +2J2 —2J3 + 4y,
Aga2 =J1 —2J2+8J3 +4J4.

Finally,

9 13
Ayiaq = _1A4’7 —9Fy 72+ 6A§714 + ZAQ’M@LM’ (2.10)
Agraz = Dyz+4F 70 —5A3 . (2.11)

Equations (2.10) and (2.11) allow to compute the first terms of the sequences 74,141
and 74,14,2. The vector space M>[T'o(14)] has dimension 4 and is spanned by the
forms ®; 7, ®1 14, P2 14 and its unique primitive form As 14.
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Table 16. First Fourier coefficients of Az 14.

n 1 2 3 4 5 6 7 8 9 10 11

i) 1 -1 -2 1 0 2 1 -1 1 0 0

n 12 13 14 15 16 17 18 19 20 21 22

maam) -2 -4 -1 0 1 6 -1 2 0 -2 0

Computing the first Fourier coefficients, we therefore find that
1 2 49 98 864 3456
Hyy=—FE;+—FE —F — - — -
1= oen b + 125742 + 950 AT + 195 2414~ op BT T o a2

48
7

39 6

72
- _A4,14,1 - 2—5A471472 + —=D®y 14+ - DEs.

7 7

Comparison with the Fourier expansion in (2.12) leads to Theorem 1.7.

3. Convolutions

of Level 1, 2, 4

(2.12)

The convolutions of level dividing 4 were evaluated in [17, Proposition 7]. We

obtained

from the equality

in M2 [To(1)];

from the equality

Wi(n) = 1—5203(71) o) + 1—1201(71)

FE? = E, +12DF,

1 4
Hy = 5E4 + 3E4’2 + 3D(I)1’2 + 6DE>

in M;2[T(2)]; and

from the equality

H

in M=2[To(4)).

1 3 4 9
4= 2—0E4 + %Em + 5E4,4 + §D‘I>1,4 +3DE,
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4. Twisted Convolution Sums
Let Xgo) be the principal character of modulus 3. Remarking that

S[0.31(n) = > ar@oi(t) — Y xS (@ai(a)or(b),

a+b=n a+b=n

we consider 7 — Fy(Fy ® xgo)). Since Es ® Xgo) € M;l[f‘o(%, ch))] = M;l[FO(Q)],

we have
E2 — By(Ex ® X)) € ME[o(9))-

We use the same method and notations as in Sec. 2.6. We compute

11 10 27
E2 - Ey(Fy® Xgo)) = %Ez; + §E4,3 — ToFae +32A49

+16D®; 5 — 16DD; g + 12D Ey.

The evaluation of S[1, 3] given in Theorem 1.9 follows by comparison of the Fourier
expansions.
We compute S[1, 3] after having remarked that

X:(zo) (n)+x3(n)  [1 ifn=1 (mod3)
2 0 otherwise.

Hence, the function to be linearized here is

1
§E2 [E2 ® Xgo) + E> ® x3]

whose nth Fourier coefficient (n € N*) is
—246(3 | n—1)o1(n) + 5765(1, 3](n).

This is again a quasimodular form in MEQ[PO(Q)L and as in Sec. 2.6, we linearize
it as

19 1 5 27

@Ez; + 2—0E4 ® X3 — §E4,3 + 2_0E4,9 + 32049 —8D®1 3 — 6D(P1 3 ® x3) +8DPy 9.

The evaluation of S[1, 3] given in Theorem 1.9 follows by comparison of the Fourier
expansions.
The evaluation of S[2, 3] follows immediately from

510, 3](n) + S[1, 3](n) + S[2,3](n) = Wi(n)

and Theorem 1.1.
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5. On Identities by Melfi

The first three identities of Theorem 1.10 are a direct consequence of the following
ones:

EyEy € ME'To(1)] = Mg[Lo(1)] @ DMy[T(1)] = CEg @ CDEy,
and

EyEy 9, 4By g € ME'[To(2)] = Mg[To(2)] & DMy[To(2)]
=CE¢® (CEG’Q ®CDEs @ (CDE4’2

which imply by comparison of the first Fourier coefficients

EyEy = FEg + 3D Ey,

1 20
EyFy9 = —FEg+ ——Ego+3DE, 2

21 21
and
5 16 3
E,FE> 5= —FEg+ —F —DE,.
abn2 = 5o b + 57 62 + 5 4

The last three identities of Theorem 1.10 are a direct consequence of the following
ones:

EyEg € ME'To(1)] = Ms[Lo(1)] @ DMg[T(1)] = CEs @ CDEg,
and

Es2Fs, BxEgo € My [To(2)] = Ms[[o(2)] & DM;g[To(2)]
=CEs® (CE&Q D (CAS’Q @ CDEg @ CDE672

which imply by comparison of the first Fourier coefficients

EyFEg = Eg + 2D Eg,

21 64 2016
EyoEg = gEs + gE&z - TAS,Q + DEg

and

1 84 504
EyFg o = gEs + gEs,z - 1—7A8,2 +2DFg 5.
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6. On Some Identities of Lahiri Type
6.1. Method

For a:= (a,...,a,) € N, b:= (by,...,b) € (2N+1)" and N := (Ny,... ,N,) €
N*" the sum S[a, b, N] defined in (1.1) is relied to the quasimodular forms via the
function

; ~<ay++ap+t(b
DalEbH—LNl ...D? Ey 1N, € Mb1+1~~~+br+7-+2((a)1+-~+ar)[FO(lcm(Nl’ .. ,Nr))]

where

tb) =#{ie {1,... ,r}: b =1}.

Since we always can consider that the coordinates of a are given in increasing order,
let ¢ be the nonnegative integer such that a; = --- = ap, = 0 and as11 # 0 (we take
¢ =0 if a has all its coordinates positive). We consider the function

4 r
\Ija,b,N = H(Eijrl,Nl - 1) H DaijjJrl,Nj
j=1 j=0+1
b1+ Fbrtr+2(aj1+-+ar) .
€ D MEm Tt O (lem (N, N,))).
k=bji1+-+br+r+2(ajr1+---+ar)—J
We have
r b +1 +o00o )
VabN(z)=(—2)" H éb— Z S[a, b, Nje2 2,
: 41 |
7j=1 J n=1

The evaluation of S[(0,1,1),(1,1,1)] is a consequence (by Lemma 1.17) of

(Ey —1)(DE,)* € CE3s © CDEg ® CD?*Ey & CD*Ey ® CEyg
®CDEg ® CD?*Es @ CD*E, © CD*E;.

The comparison of the first Fourier coefficients leads to

1 2 4
(By —1)(DEy)? = —5D2E4 —2D%FEy + ﬁD2E6 + 5D3E4 +6D*F;.
Hence the evaluation of S[(0,1,1), (1,1,1)] given in Theorem 1.11.
The evaluation of S[(0,0,0,1,1),(1,1,1,1,1)] is a consequence (by Lemma
1.17) of

7T T—1
(B> —1)*(DEy)* € CA @ CDAEP @D CD Ey.

i=1 j=0
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The comparison of the first Fourier coefficients leads to

216 144

(FBy —1)3(DE,)? = A + 35DA —2D3FEy +18D*Ey — —D‘JEQ - —D6E2
1 12 234 171 2
—ZD?Es+ Z=D*E,— =——D'E,+ —D°Es+ =D?E,
50 Mty 735 4135 t e

9
~=D%Es D4E _lpg D3E 2
7 o1 R T 55D Eo-
Hence the evaluation of S[(0,0,0,1,1),(1,1,1,1,1)] given in Theorem 1.11.
We leave the proofs of Propositions 1.12 and 1.13 to the reader. They are

obtained from the linearizations of
(Bap —1)DEy 5 € M:2[To(5)] & Mg [To(10)] (6.2)
and

DE;DEy 5 € MEP[To(5)].

6.2. Primaitive forms of weight 6 and level 5 or 10

For the evaluation of (6.2) we remark that Ay 5®q 5 is a parabolic modular form of
weight 6 and level 5. Since the dimension of these forms is 1, we have
1
Ao 5(2) = 7[A(2)A(52)]/*[5E(52) — Ba(2)]. (6.3)
Equation (6.3) provides a way to compute the few needed values of 74 5.
We also give expressions for Ag 19,; where i € {1,2,3}. We shall use the second
Hecke operator of level 10 given by

T2 . Z f(m)e%rimz — Z Z dk—lf(ii_";l) 27rzmz _ Z ,f 2m 271'1,mz

meZ meZ deN meZ
d|(m,2)
(d,10)=1
The space of parabolic modular forms of weight 6 and level 10 has dimension 5. A
basis is given by

Ao 5(2) = [A(2)A(52)]V5® 5(2),
Ng52(2) = Ng 5(22),
F(2) = 3[A(2)A(52)]Y%® ) 10(2),
Fi(2) = [A(z)A(52)] /0P 5(2),
Fy(z) = ToF(2)
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To simplify the computations, we use an echelonized basis:

4 31 15 1 3
Vi = —1—5A6,5 + 1—OA6,5,2 + ﬁF + %E + %F2 = e(z) + O(e(62)),
1 6 1
= —A 5 -A 5 —F) =e(2 )
Vo 5026 + 5B, 2+ 3002 e(22) + O(e(62))
Vi = — S Ags+ Agsat L F— LFy LB — e(32) + O(e(62))
2T 307 T 1072 T30 o6t T80 2 ’
1 1 1
Vi = —4—0A6,5 — 1—OA6,5,2 — EFQ = e(4z) + O(e(62)),
1 11 11 1 3
= —Ags— —Ngso— —F— —F — —F, = :
Vs = 75865 — gpfese — gp i~ gt ~ oo  €(9%) + 0(e(62))

We deduce
Dg 10 =Vi+b;Vo+c;Va+diVi+eVs

since A/ﬁ,l\o,z'(l) = 1. Now, from A/GJ\O7¢(4) = A/e;,l\o@(?)Q, we get d; = b? so that
Ag10i = Vi +biVa+c;Va + b2V + e;Vs.

Next, from A 10,(6) = A6,10,1(2)R6,104(3), and Ag 10.1(8) = g 10,1(2)A6,10,:(4),
we respectively get

2¢; + bici + 2e; = 10 — 2b; — b? (6.4)
and
8c; — 8e; = 24 + 16b; + 6b7 + b} (6.5)
Equations (6.4) and (6.5) give either b; = —4 or b; # —4 and
1 14
Cl_4_§b7,+1bz
and
5 1 1
We first deal with the case b; # —4. We then get

11 5. 1, 1
Ne0: = Vi +biVa + (4 —5hi+ Zb§>V3 +b7Va + (1 - 5bi— b - gb‘?)%-

Using A/GJ\OJ(lO) = @1(2)@1(5), we obtain

5 1 1
i 1= =bi — b7 — <b?
b( Sbi— b Sbl>

B ‘ 11, ) 5, 1., 14
= —30 + 15b; 10(4 2b1+4bi)+5bi+6<1 Sbi — b7 = gh;

from what we get

bi € {—4,4,1—1iV31,1 +14V31}.
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The solution b; = —4 is in this case not allowed whereas the solution 1 4 71/31
are not possible since the coefficients of a primitive form are totally real algebraic
numbers [9]. We thus obtain a first primitive form:

ANg101 = Vi + 4V + 6V5 + 16V, — 25V5.
We assume now that b; = —4 so that
Ng10i =Vi —4Vo+¢;Va +16Vy + (¢; + 1) V5.

From A/&l\w(15) = A/&l\o’i(g)A/&l\(]?i(5), we obtain ¢; = 24 or ¢; = —26. We hence
get the two other primitive forms

Ng 0,2 = V1 —4Va + 24V5 + 16V, + 25V5
and
A 10,3 = Vi —4Va — 26V5 + 16V, — 25V5.

We deduce the following expressions:

1
Ag 101 = —Dg5 + 160652 + F + ZFQ’ (6.6)
4 7 7
Ag102 = —=Ag5 + 8A Ly .
6,10,2 3565 + 8A¢52 + 3 oq b (6.7)
1 1 1
A671073 = —§A675 — 16A67572 + §F1 — ZFZ (68)

Equations (6.6)—(6.8) provide a way to compute the few needed values of 74 1¢,; for
ie{l1,2,3}.

6.3. Primitive forms of weight 8 and level 5

The method is the same as in Sec. 6.2 so we will be more brief. The space of
parabolic forms of weight 8 and level 5 has dimension 3 and a basis is

Gi(2) = [A(2)A(52)] /7,
Ga(2) = [A(2)A(52)] /0@y 5(2)%,

1
=——FE;, @
Gs 24[ 1, P12,
where [ , |1 is the Rankin—-Cohen bracket here defined by
1
[Eq, @12]1 = %(4]54‘1’/1,5 —2E;®, 5)

(see [29, Part 1, Sec. E] or [19, Part I, Sec. 6] for more details). We echelonize this
basis by defining:

46 82 3
Wy = %Gl + 2—5G2 — %GB = e(z) + O(e(42)),
47 76 4
W2 = %Gl - %GQ + %G?) - 6(22) + 0(6(4’2))ﬂ
41 19 1

W3 = G1— —G3 + —G3 =¢e(3z) + O(e(4z2)).

3751 750 750
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The primitive forms are then

Agsi = Wi+ b;Wa+c¢;Ws.

From Ags(4) = Ags5:(2)% — 27 and Ags5,(6) = Ags.:(2)As.5.4(2) we get

1
ci = T8+ 2b; — 51;3,
(b + 14)(b? — 20b; + 24) = 0.

Finally, defining t as one of the roots of X2 — 20X + 24, we get

1

16 22
Ags1 = — —Gy— =Gs, )
8,5,1 3G1+ 3G2 3G3 (6.9)

Agsz2 = (12— 1)G1 + Ga, (6.10)

Ags3 = (t —8)G1 + Ga. (6.11)
Equations (6.9)—(6.11) provide a way to compute the few needed values of 7g 5 ; for
i€ {1,2,3}.
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