Differential algebras of quasi-Jacobi forms of index 0

Emmanuel ROYER in collaboration with François DUMAS and françois MARTIN

Contents

Date: 2024, November 21.

1. Introduction : derivations of modular forms

1.1. **Modular forms.** References: [\[Ser78\]](#page-14-1)

We recall that a modular form of weight $k \in \mathbb{Z}_{\geq 0}$ on SL(2, \mathbb{Z}) is the vector space M_k of holomorphic functions f on $\mathcal{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ that satisfies

$$
\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \ \forall \tau \in \mathcal{H} \qquad \underbrace{(c\tau + d)^{-k}f\begin{pmatrix} a\tau + b \\ \overline{c\tau + d} \end{pmatrix}}_{=:f|_{k}(\begin{matrix} a & b \\ c & d \end{matrix})(\tau)} = f(\tau)
$$

and

$$
f(\tau) = \sum_{n=0}^{+\infty} \widehat{f(n)} e(n\tau) \quad e(\xi) = \exp(2\pi i \xi).
$$

The algebra M of all modular forms is a polynomial algebra

$$
\mathcal{M} = \bigoplus_{\substack{k \in 2\mathbb{Z}_{\geq 0} \\ k \neq 2}} \mathcal{M}_k = \mathcal{M} = \mathbb{C}[e_4, e_6]
$$

where

$$
\forall k \in 2\mathbb{Z}_{\geq 0} \ \ k \geq 4 \qquad e_k(\tau) = \sum_{\omega \in \mathbb{Z} \oplus \tau \mathbb{Z}} \frac{1}{\omega^k}.
$$
 (1.1)

The algebra M is not stable by differentiation with respect to τ .

1.2. **Serre's derivative.** References: [\[Zag08\]](#page-14-2)

Let

$$
\partial_{\tau} = \frac{\pi}{2i} \frac{\partial}{\partial \tau}
$$

and e_2 is defined similarly to [\(1.1\)](#page-1-3) but with extra care due to the lack of absolute convergence:

$$
e_2(\tau) = \lim_{N \to +\infty} \sum_{n=-N}^{N} \lim_{M \to +\infty} \sum_{\substack{m=-M \\ (m,n) \neq (0,0)}}^{M} \frac{1}{(m\tau+n)^2}.
$$

We define the linear map

$$
Se_k: f \mapsto 4 \partial_{\tau}(f) - kf \, e_2
$$

and prove that it satisfies $Se_k(\mathcal{M}_k) = \mathcal{M}_{k+2}$. This is the restriction to M_k of a derivation Se of the algebra M.

The introduction of Serre's derivative is a response to the lack of stability under differentiation in the algebra of modular forms.

1.3. **Quasimodular forms.** References: [\[Roy12\]](#page-14-3)

Differentiating the definition of modular forms leads to

$$
(c\tau + d)^{-k-2n} \frac{\partial^n f}{\partial \tau^n} \left(\frac{a\tau + b}{c\tau + d} \right) = \sum_{r=0}^n f_r(\tau) \left(\frac{c}{c\tau + d} \right)^r
$$

for some (explicitly computable) holomorphic functions f_r not depending on $\binom{a}{b}$ $\frac{a}{c}\frac{b}{d}$). This computation justifies the following definition implying the cocycle:

$$
X : SL(2, \mathbb{Z}) \rightarrow \mathbb{C}^{\mathcal{H}}
$$

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow (\tau \rightarrow \frac{c}{c\tau + d}).
$$

Definition 1.1. A holomorphic function $f \in \mathbb{C}^{\mathcal{H}}$ is a quasimodular form of weight k and depth s if there exist holomorphic functions f_0, \ldots, f_s with $f_s \neq 0$ such that

$$
\forall \gamma \in \mathsf{SL}(2,\mathbb{Z}) \quad f|_{k}\gamma = \sum_{r=0}^{s} f_r \, \mathsf{X}(\gamma)^r
$$

and

$$
\forall r \quad f_r(\tau) = \sum_{n=0}^{+\infty} \widehat{f_r}(n) e(n\tau).
$$

Since

$$
\frac{\partial X^2}{\partial \tau} = -X^2,
$$

the definition of quasimodular forms implies that $M^{\leq \infty}$ is stable by differentiation.

The derivatives of modular forms describe nearly all quasimodular forms. The vector space of quasimodular forms of weight k is

$$
\mathcal{M}_k^{\leq \infty} = \bigoplus_{r=0}^{k/2-2} \frac{\partial^r}{\partial \tau^r} \mathcal{M}_{k-2r} \oplus \mathbb{C} \frac{\partial^{k/2-1}}{\partial \tau^{k/2-1}} e_2.
$$

The algebra of quasimodular forms is also a polynomial algebra

$$
\mathcal{M}^{\leq \infty}=\mathcal{M}\left[\,e_2\,\right]=\mathbb{C}\left[\,e_2,e_4,e_6\,\right].
$$

The introduction of the notion of quasi-modular forms is a response to the lack of stability under differentiation in the algebra of modular forms.

1.4. **Rankin-Cohen brackets.** References: [\[CS17\]](#page-14-4)

Another notion provides us with a response, that has been initiated by Rankin and fully developed by Henri Cohen. The typical question is to find a bilinear form in the derivatives of two modular forms in such a way to obtain a new modular form. A prototypical example is the following: if $f \in M_k$ and $g \in M_l$, then

$$
[f,g]_1 = kf \,\partial_\tau(g) - \ell g \,\partial_\tau(f) \in \mathcal{M}_{k+\ell+2}.
$$

Cohen extended this showing that

$$
[f,g]_n = \sum_{r=0}^n (-1)^r \binom{k+n-1}{n-r} \binom{\ell+n-1}{r} \partial_\tau^r(f) \partial_\tau^{n-r}(g) \in \mathcal{M}_{k+\ell+2n}
$$

for any n. Note that \lceil , \rceil_n can be extended to M by bilinear extension.

A fact conjectured by Eholzer and proved by the combination of efforts of Cohen, Manin & Zagier on the one hand and Yao on the other hand is that the family ([,]_n)_{n∈ℤ≥0} is a formal deformation.

Definition 1.2. Let A be a commutative \mathbb{C} -algebra and $(\mu_i)_{i \in \mathbb{Z}_{>0}}$ a family of bilinear maps from $A \times A$ to A such that μ_0 is the product on A. Let A**[[**ℏ**]]** the commutative algebra of formal power series in ℏ with coefficients in A. Then, **(**μj**)**j**∈**Z**≥**⁰ is a formal deformation of A if the non-commutative product on A**[[**ℏ**]]** defined by extension of

$$
f * g = \sum_{j \in \mathbb{Z}_{\geq 0}} \mu_j(f, g) \hbar^j \qquad (f, g \in A)
$$

is associative.

This notion encodes a wide range of equalities since, the associativity of ∗ is equivalent to

$$
\sum_{r=0}^n \mu_{n-r}(\mu_r(f,g),h) = \sum_{r=0}^n \mu_{n-r}(f,\mu_r(g,h)) \quad (f,g,h \in A).
$$

The introduction of the notion of formal deformation is a response to the lack of stability under differentiation in the algebra of modular forms.

2. Derivations of Jacobi forms

2.1. **Jacobi forms.** References: [\[EZ85,](#page-14-5) [DMR24\]](#page-14-6)

The notion of modular form originates in the action of $SL(2,\mathbb{Z})$ to \mathcal{H} and the notion of weight is attached to the cocycle

$$
j : SL(2, \mathbb{Z}) \rightarrow \mathbb{C}^{\mathcal{H}}
$$

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow (\tau \rightarrow \frac{c}{c\tau + d}).
$$

This is a cocycle of $SL(2,\mathbb{Z})$ for its action of weight 1 on \mathcal{H} , meaning $j(\gamma\gamma)(\tau) = j(\gamma)(\gamma'\tau)j(\gamma')(\tau).$

The multiplicative group SL(2, \mathbb{Z}) acts on the additive group \mathbb{Z}^2 (whose elements are identified with 1 **×** 2 matrices) by right multiplication

$$
((\lambda, \mu), \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)) \mapsto (\lambda \mu) \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) = (\lambda a + \mu c, \lambda b + \mu d)
$$

and on $H \times \mathbb{C}$ by

$$
\left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right), (\tau, z)\right) \mapsto \left(\frac{a\tau + b}{c\tau + d}, \frac{z}{c\tau + d}\right)
$$

whereas \mathbb{Z}^2 acts on $\mathcal{H} \times \mathbb{C}$

$$
(\lambda,\mu)(\tau,z)\mapsto (\tau,z+\lambda\tau+\mu).
$$

The semi-direct product SL(2, $\mathbb{Z})$ \ltimes \mathbb{Z}^2 is the set SL(2, $\mathbb{Z})\times \mathbb{Z}^2$ with the group operation

$$
(\gamma, x) \cdot (\gamma', x') = (\gamma \gamma', x \gamma' + x').
$$

It acts on $H \times \mathbb{C}$ the following way:

$$
\left(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right), (\lambda, \mu)\right) \mapsto \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) ((\lambda, \mu) (\tau, z)) = \left(\frac{a\tau + b}{c\tau + d}, \frac{z + \lambda\tau + \mu}{c\tau + d}\right).
$$

Let G be a group acting on the right on the group H via . This action defines a morphism from G into Aut(H): $q \rightarrow (h \rightarrow h \circ q)$, and thus a group $G \times H$, called the semidirect product of G and H , whose product is given by

 $(g, h) \ltimes (g', h') = (gg', (h \odot g')h')$.

Let F be a set on which G acts on the left via $|G|$, and H acts on the left via $|H|$. Assume that the actions are compatible in the following sense:

 \forall (a, h) ∈ G × H \forall f ∈ F g|_G ((h ⊙ g)|_Hf) = h|_H (g|_Gf).

Then, a left action of $G \ltimes H$ on F is defined by setting

 \forall (g, h) ∈ G × H \forall f ∈ F (g, h)|f = g|_G (h|_Hf).

We have two cocycles of SL(2, Z) into $\mathbb{C}^{\mathcal{H}\times\mathbb{C}}$ described by

$$
j\begin{pmatrix} a & b \\ c & d \end{pmatrix}(\tau, z) = c\tau + d \qquad \ell\begin{pmatrix} a & b \\ c & d \end{pmatrix}(\tau, z) = e\begin{pmatrix} -cz^2 \\ -\overline{c\tau + d} \end{pmatrix}
$$

and one of \mathbb{Z}^2 into $\mathbb{C}^{\mathcal{H}\times\mathbb{C}}$ described by

$$
p(\lambda, \mu)(\tau, z) = e(\lambda^2 \tau + 2\lambda z).
$$

 $p((\lambda,\mu)+(\lambda',\mu'))(\tau,z)=p((\lambda,\mu))((\lambda',\mu')(\tau,z))\cdot p((\lambda',\mu'))(\tau,z)$

By a general method, one deduces a cocycle of SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2 into C ^H**×**^C described by

$$
\mathcal{V}\big(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right), (\lambda, \mu)\big)(\tau, z) = (c\tau + d)^{-k} \underbrace{e^m \left(-\frac{c(z + \lambda \tau + \mu)^2}{c\tau + d} + \lambda^2 \tau + 2\lambda z\right)}.
$$

exp**(**2πim**·)**

Let G and H be two groups written multiplicatively. Assume that G acts on the right on H . Let A be an abelian group on which G acts on the right via \vert_G and H acts on the right via $|_H$, with the actions of G and H on A respecting the group structures. Assume that the actions are compatible in the following sense: \forall (g, h) ∈ G × H \forall a ∈ A (a|_Gg) |_H(hg) = (a|_Hh) |_Gg. Let v_G be a cocycle of G in A, and let v_H be a cocycle of H in A. Define $ν$: G κ Η → $(g, h) \rightarrow (\nu_G(g)|_H h) \cdot \nu_H(h).$ The map is a cocycle of $G \ltimes H$ in A if and only if it satisfies the cocycle condition on $(e_G, H) \times (G, e_H)$, that is, if and only if ∀**(**g, h**) ∈** G **×** H $\frac{v_G(g)|_H(hg)}{v_G(g)} = \frac{v_H(h)|_Gg}{v_G(hg)}$. $\overline{v_G(q)}$ $\overline{\nu_H(hg)}$

Finally, we have an action of SL(2, $\mathbb{Z}) \ltimes \mathbb{Z}^2$ on $\mathbb{C}^{\mathcal{H} \times \mathbb{C}}$, of weight k and depth m described by

$$
f|_{k,m}((\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}), (\lambda, \mu))(\tau, z) =
$$

$$
(c\tau + d)^{-k} e^m \left(-\frac{c(z + \lambda \tau + \mu)^2}{c\tau + d} + \lambda^2 \tau + 2\lambda z \right) f\left(\frac{a\tau + b}{c\tau + d}, \frac{z + \lambda \tau + \mu}{c\tau + d} \right).
$$

Note that if f in invariant under this action, then it is 1-periodic both in the τ and ζ aspects. In particular, if it has a Laurent expansion around 0 given by

$$
f(\tau,z)=\sum_{n=-N}^{+\infty}A_n(\tau)z^n
$$

then, the Laurent coefficients are 1-periodic in the τ aspect.

The notion of singularity entails the analytic conditions we shall add to the invariant functions under the action of $SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2$. A function $f \in \mathbb{C}^{\mathcal{H} \times \mathbb{C}}$ is *singular* if

- For any τ , the function $z \mapsto f(\tau, z)$ is 1-periodic, meromorphic with poles in \mathbb{Z} **⊕** τ \mathbb{Z} , all having same order not depending on τ,
- The function $\tau \mapsto f(\tau, z)$ is 1-periodic
- The laurent coefficients A_n are holomorphic on H and have a Fourier expansion of the form

$$
A_n(\tau)=\sum_{r=0}^{+\infty}\widehat{A_n}(r)\operatorname{e}(r\tau).
$$

A singular Jacobi form of weight k and index m is then a function $f \in \mathbb{C}^{\mathcal{H} \times \mathbb{C}}$ that is invariant under the action of SL(2, Z) $\ltimes \mathbb{Z}^2$ of weight k and index *and singular.*

We focus on the case $m = 0$ and shall omit to say "of index 0" at any time we should. We denote by J the algebra of all singular Jacobi forms of index 0. Examples are

- (1) Any modular form,
- (2) The Weierstrass function

$$
\wp(\tau,z) = \frac{1}{z^2} + \sum_{\substack{\omega \in \mathbb{Z} \oplus \tau\mathbb{Z} \\ \omega \neq 0}} \frac{1}{(z-\omega)^2} - \frac{1}{\omega^2}
$$

that satisfies

$$
\wp(\tau,z) = \frac{1}{z^2} + \sum_{n=1}^{+\infty} (2n+1) e_{2n+2}(\tau) z^{2n}
$$

is a singular Jacobi form of weight 2 and index 0,

(3) its derivatives with respect to the second variable

$$
\underbrace{\partial_z}_{\partial/\partial z}\not\!O
$$

is a singular Jacobi form of weight 3 and index 0.

Proposition 2.1 (van Ittersum ; Dumas, Martin & Royer)**.** The three singular Jacobi forms \wp , $\partial_z \wp$ and e_4 are algebraically independent and generate the algebra of singular Jacobi forms:

$$
\mathcal{J} = \mathbb{C}[\wp, \partial_z \wp, e_4].
$$

$$
e_6 = -\frac{1}{140} (\partial_z \wp)^2 + \frac{1}{35} \wp^3 - \frac{3}{7} \wp e_4.
$$

2.2. **Oberdieck's derivative.** References: [\[Obe14,](#page-14-7)[CDMR21a\]](#page-14-8)

If $\mathcal J$ is trivially stable by ∂_z , it can be seen that it is not stable by ∂_τ , for example by remarking that ∂_{τ} e₄ is not a modular form. Oberdieck's derivative plays for J the role that Serre's derivative plays for modular forms.

Let E_1 be defined by

$$
E_1(\tau, z) = \lim_{N \to +\infty} \sum_{n=-N}^{N} \lim_{M \to +\infty} \sum_{\substack{m=-N \\ (m,n) \neq (0,0)}}^{M} \frac{1}{z + m\tau + n}
$$

= $\frac{1}{z} - \sum_{r=0}^{+\infty} e_{2r+2}(\tau) z^{2r+1}.$

Oberdieck's derivation is defined by over \mathcal{J}_k by

Ob_k(f) =
$$
\underbrace{4 \partial_{\tau}(f) - k \, e_2 f}_{\text{Se}_k(f)}
$$
 + E₁ $\partial_z(f)$ (f $\in \mathcal{J}_k$)

and its linear extension Ob to J satisfies (Oberdiecks: Choie, Dumas, Martin & Royer) $Ob(\mathcal{J}) \subset \mathcal{J}$, and more precisely $Ob(\mathcal{J}_k) \subset \mathcal{J}_{k+2}$.

By dimension consideration, $Ob(p)$ belongs to the space \mathcal{J}_4 generated by \wp and e₄. One deduces that $Ob(\wp) = -2(\wp^2 - 10 e_4)$ which

leads to the well known

$$
2(2n+1)\partial_{\tau}e_{2n+2} = (n+1)(2n+1)e_{2n+2}e_2 - (n+2)(2n+5)e_{2n+4} + \sum_{\substack{a \ge 1, b \ge 1 \\ a+b=n}} (2a+1)(a-2b-1)e_{2a+2}e_{2b+2}.
$$

2.3. **Quasi-Jacobi forms.** References: [\[vI23,](#page-14-9) [DMR24\]](#page-14-6)

The action of SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2 ton $\mathcal{H} \ltimes \mathbb{C}$ is described by

H :
$$
SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2 \rightarrow (\mathcal{H} \times \mathbb{C})^{\mathcal{H} \times \mathbb{C}}
$$

\n $((\begin{array}{c} a & b \\ c & d \end{array}), (\lambda, \mu)) \rightarrow (\begin{array}{c} \mathcal{H} \times \mathbb{C} & \rightarrow & \mathcal{H} \times \mathbb{C} \\ (\tau, z) & \mapsto & (\frac{a\tau + b}{c\tau + d}, \frac{z + \lambda \tau + \mu}{c\tau + d}) \end{array})$

that satisfies

$$
\frac{\partial H}{\partial \tau} = \left(\frac{1}{j^2}, -\frac{\Upsilon}{j}\right) \qquad \frac{\partial H}{\partial z} = \left(0, \frac{1}{j}\right)
$$

where Y is defined by:

$$
Y((\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}), (\lambda, \mu))(\tau, z) = \frac{cz + c\mu - d\lambda}{c\tau + d}.
$$

Moreover (X is the natural extension to $SL(2, \mathbb{Z}) \ltimes \mathbb{Z}^2$ of the previously defined X function)

$$
\frac{\partial j}{\partial \tau} = Xj \quad \frac{\partial j}{\partial z} = 0 \qquad \frac{\partial Y}{\partial \tau} = -XY \quad \frac{\partial Y}{\partial z} = X \qquad \frac{\partial X}{\partial \tau} = -X^2 \quad \frac{\partial X}{\partial z} = 0.
$$

This remark justifies, since our goal is the stability by ∂_{τ} and ∂_{z} to introduce the following notion of quasi-Jacobi form.

Definition 2.2. A singular function $f \in \mathbb{C}^{\mathcal{H} \times \mathbb{C}}$ is a quasi-Jacobi form of *weight k and depth (s***1, s₂) if there exist singular functions (f_{r1,r2})o≤r₁≤s₁** 0<r₂^{55}

with
$$
f_{s_1,s_2} \neq 0
$$
 such that

$$
\forall A \in SL(2,\mathbb{Z}) \ltimes \mathbb{Z}^2 \quad f|_{k,0}A = \sum_{r_1=0}^{s_1} \sum_{r_2=0}^{s_2} f_{r_1,r_2} \, X(A)^{r_1} \, Y(A)^{r_2}.
$$

The corresponding notation are $\mathcal{J}_k^{\leq S_1, S_2}$ $\kappa^{\leq S_1,S_2}$ for the vector space of quasi-Jacobi forms of weight k and depth (u, v) with $u \leq s_1$ and $v \leq s_2$ and $\mathcal{J}^{\leq \infty}$ for the algebra of all the quasi-Jacobi forms.

This algebra is stable by the derivations with respect to both variables:

$$
\partial_{\tau}\left(\mathcal{J}_{k}^{\leq s_{1},s_{2}}\right)\subset\mathcal{J}_{k+2}^{\leq s_{1}+1,s_{2}+1}\text{ and }\partial_{z}\left(\mathcal{J}_{k}^{\leq s_{1},s_{2}}\right)\subset\mathcal{J}_{k+1}^{\leq s_{1}+1,s_{2}}.
$$

A prototypical example, beside all quasimodular forms and all Jacobi forms is E_1 since

$$
E_1|_{1,0}A = E_1 + 2\pi i Y(A)
$$

and hence E_1 has weight 1 and depth $(0, 1)$. Together with e_2 whose depth is **(**1, 0**)**, one can recursively decrease the depth of any quasijacobi form and prove

$$
\mathcal{J}^{\leq \infty} = \mathcal{J}[\, \mathsf{E}_1, \mathsf{e}_2\,] = \mathbb{C}[\, \beta, \partial_z \, \beta, \mathsf{e}_4, \mathsf{E}_1, \mathsf{e}_2\,].
$$

From the notion of a bi-depth emerge two remarkable subalgebras of quasi-Jacobi forms:

 $\mathcal{J}^{\leq \infty,0} = \mathbb{C}[\ \wp, \partial_z \ \wp, \mathsf{e}_4,\mathsf{e}_2]$ (quasimodular type)

and

 $\mathcal{J}^{\leq 0, \infty}$ = ℂ[β , $\partial_z \beta$, e₄, E₁] (elliptic type).

2.4. **Bilinear combinations of derivatives.** Reference: [\[DMR24\]](#page-14-6)

2.4.1. Rankin-Cohen brackets of elliptic type. Since $\mathcal{J}^{\leq \infty}$ is stable by $∂_τ$, then

$$
[f,g]_n = \sum_{r=0}^n (-1)^r {k+n-1 \choose n-r} {l+n-1 \choose r} \partial_\tau^r(f) \partial_\tau^{n-r}(g)
$$

(with $f \in \mathcal{J}_k^{\leq \infty}$ $g \in \mathcal{J}_\ell^{\leq \infty}$ and $g \in \mathcal{J}_\ell^{\leq \infty}$ $\mathcal{C}^{\leq \infty}_{\ell}$) extends to a sequence of bilinear maps from $\mathcal{J}^{\leq \infty}$ **x** $\mathcal{J}^{\leq \infty}$ to $\mathcal{J}^{\leq \infty}$, and indeed this remains true if we replace the binomial coefficients by any other coefficients... However, the particular choice we made for the coefficients implies that $([\, , \,]_n)_{n \in \mathbb{Z} > 0}$ is a *formal deformation* of $\mathcal{J}^{\leq \infty}$. This results from a general result we established with Choie, Dumas & Martin in 2021 [\[CDMR21b\]](#page-14-10) and whose proof relies on a 2004 result due to Connes & Moscovici [\[CM04\]](#page-14-11).

Let $A = \bigoplus_{k \in \mathbb{Z}_{\geq 0}} A_k$ be a graded commutative *ℂ*-algebra, and *D* a derivation of A such that $D(A_k) \subset A_{k+2}$ for any $k \ge 0$. Let us consider the sequence $(\lceil \; , \; \rceil^D_n)_{n \ge 0}$ of bilinear maps $\overrightarrow{A} \times \overrightarrow{A} \rightarrow \overrightarrow{A}$ defined by bilinear extension of $[f, g]_n^D = \sum_{n=1}^{n}$ r**=**0 $(-1)^r {k+n-1 \choose n}$ n **−** r $\sqrt{l + n - 1}$ r $\bigg|D^{r}(f)D^{n-r}(g),$

for any $f \in A_k$, $g \in A_l$. Then, $([\, , \,]^D_n)_{n \geq 0}$ is a formal deformation of A.

A bit more surprising is the fact that $\mathcal{J}^{\leq 0, \infty}$ is also stable by $([\;,\;]_n)_{n\in\mathbb{Z}_{\geq 0}}.$ To prove this result, we developed again with Choie, Dumas & Martin a general method called extension-restriction.

Let A a commutative $\mathbb C$ -algebra, and Δ and D two $\mathbb C$ -derivations of A satisfying

$$
\Delta D - D\Delta = D.
$$

The Connes-Moscovici deformation on A associated to **(**D,Δ**)** is the $\mathsf{sequence}\,(\mathsf{CM}_{n}^{D,\Delta})_{n\geq 0}$ of bilinear maps $A\!\times\! A\to\! A$ defined for any $f,g\in\! A$ by

$$
CM_n^{D,\Delta}(f,g) = \sum_{r=0}^n \frac{(-1)^r}{r!(n-r)!} D^r (2\Delta + r)^{\langle n-r \rangle} (f) D^{n-r} (2\Delta + n-r)^{\langle r \rangle} (g),
$$

with convention $1 = Id_A$ and for any function $F: A \rightarrow A$ the Pochhammer notation:

 $F^{(0)} = 1$ and $F^{(m)} = F(F + 1) \cdots (F + m - 1)$ for any $m \ge 1$.

Théorème 2.3. Consider a commutative C-algebra R and a subalgebra A of R. Let Δ and θ be two C-derivations of R such that Δθ **−** θΔ **=** θ. We assume that

12 E. ROYER

- (1) Δ**(**A**) ⊆** A and θ**(**A**) ⊆** A;
- (2) there exists h **∈** A such as Δ**(**h**) =** 2h;
- **(3)** there exists $x \in R$, $x \notin A$ such that $\Delta(x) = x$ and $\theta(x) = -x^2 + h$.

Then, the derivation D :**=** θ **+** 2Δ of R satisfies ΔD **−** DΔ **=** D and the Connes-Moscovici deformation **(**CMD,^Δ n **)**n**≥**⁰ of R defines by restriction to A a formal deformation of A.

$$
A = \mathcal{J}^{\leq 0, \infty} \subset \mathcal{J}^{\leq \infty} = R, \Delta(f) = \frac{k}{2}f, \theta = \frac{1}{4}(Ob - E_1 \partial_z), x = \frac{1}{4}e_2, h = -\frac{5}{16}e_4.
$$

However, \mathcal{J} and $\mathcal{J}^{\leq \infty,0}$ are not stable by $([\ ,\]_n)_{n\in\mathbb{Z}_{\geq 0}}.$

2.4.2. Rankin-Cohen brackets of quasimodular type. Consider

$$
d = \partial_{\tau} + \frac{1}{4} E_1 \, \partial_z = \frac{1}{4} \, \text{Ob} + \frac{1}{2} \, \text{e}_2 \, \Delta
$$

and consider the sequence $([\, , \,]\,n)_{n\geq 0}$ of applications from $\mathcal{J}^{\leq \infty} \times \mathcal{J}^{\leq \infty}$
to $\mathcal{J}^{\leq \infty}$ defined by bilinear extension of to J **[≤]**[∞] defined by bilinear extension of

$$
[f,g]_n = \sum_{r=0}^n (-1)^r {k+n-1 \choose n-r} {l+n-1 \choose r} d^r(f) d^{n-r}(g)
$$

for all $f \in \mathcal{J}_k^{\leq \infty}$ k , g **∈** J **≤**∞ ,≤∞
ℓ ·

Since Ob stabilises $\mathcal{J}^{\leq \infty,0}$, then $\mathcal{J}^{\leq \infty}$ and $\mathcal{J}^{\leq \infty,0}$ are stable by any linear combination of d r **(**ƒ **)**d n**−**r **(**g**)**. Again, applying our general method we find that the particular choice of coefficients implies that the sequence we have built is a formal deformation of $\mathcal{J}^{\leq \infty}$ and $\mathcal{J}^{\leq \infty,0}$.

Our extension-restriction method implies the more remarkable following statement : $(\mathbb{I}, \mathbb{I}_n)_n$ is a formal deformation of the algebra $\mathcal J$ of singular Jacobi forms.

2.4.3. The transvectant approach. Reference: [\[Olv99,](#page-14-12) [DMR24\]](#page-14-6)

Finally, to build a sequence of bilinear maps that stabilises again J **[≤]**∞,⁰ but not trivially we use the notion of transvectant due to Cayley.

The *n*-th transvectant of f , $g \in C^{\infty}(\mathbb{C}^2)$ is

$$
\begin{array}{cccc} \{f,g\}_n & : & \mathbb{C}^2 & \rightarrow & \mathbb{C} \\ & (x,y) & \mapsto & \Omega^n(((x_1,y_1),(x_2,y_2)) \rightarrow f(x_1,y_1)g(x_2,y_2))(x,y) \end{array}
$$

where

$$
\Omega = \det \begin{pmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial y_1} \\ \frac{\partial}{\partial x_2} & \frac{\partial}{\partial y_2} \end{pmatrix}.
$$

One can compute an explicit form:

$$
\{f, g\}_n = \sum_{r=0}^n (-1)^r \binom{n}{r} \frac{\partial^n f}{\partial x^{n-r} \partial y^r} \frac{\partial^n g}{\partial x^r \partial y^{n-r}}
$$

and that the sequence $(\frac{1}{n})$ $\frac{1}{n!}$ {, }_n) is a formal deformation of $C^{\infty}(\mathbb{C}^2)$.

The following proposition is straightforward:

Proposition 2.4 (easy)**.** Consider the sequence **(**{ , }n**)**n**≥**⁰ of bilinear applications from J **[≤]**[∞] **×** J **[≤]**[∞] to J **[≤]**[∞] defined by

$$
\{f,g\}_n = \sum_{r=0}^n (-1)^r \binom{n}{r} \partial_{\tau}^{n-r} \partial_{z}^r(f) \partial_{\tau}^r \partial_{z}^{n-r}(g) \quad f, g \in \mathcal{J}^{\leq \infty}
$$

(1) The sequence **(** 1 $\frac{1}{n!}$ { , }_n)_{n≥0} is a formal deformation of $\mathcal{J}^{\leq \infty}$.

$$
(2) \ \{ \mathcal{J}_k^{\leq \infty}, \mathcal{J}_\ell^{\leq \infty} \}_n \subset \mathcal{J}_{k+\ell+3n}^{\leq \infty} \text{ for all } n, k, \ell \geq 0.
$$

But, being more clever and using carefully the two following properties:

(1) a recurrence formula (just the binomial theorem...):

$$
\{f,g\}_{n+1}=\{\partial_xf,\partial_yg\}_n-\{\partial_yf,\partial_xg\}_n
$$

that allows to compute recursively all the brackets one we have seen that the 0 bracket is the product

(2) the formal deformation property is equivalent to

$$
\sum_{r=0}^n \binom{n}{r} \{ \{f,g\}_r, h \}_{n-r} = \sum_{r=0}^n \binom{n}{r} \{f, \{g, h\}_r \}_{n-r}.
$$

we can prove that

Théorème 2.5. The sequence $\left(\frac{1}{n}\right)$ $\frac{1}{n!}$ {, }_n} $_{n}$ is a formal deformation of J **≤**∞,0 .

<https://canadafrance.pages.math.cnrs.fr>

References

- [CDMR21a] Youngju Choie, François Dumas, François Martin, and Emmanuel Royer. A derivation on Jacobi forms: Oberdieck derivation. working paper or preprint, February 2021.
- [CDMR21b] YoungJu Choie, François Dumas, François Martin, and Emmanuel Royer. Formal deformations of the algebra of Jacobi forms and Rankin-Cohen brackets. C. R., Math., Acad. Sci. Paris, 359(4):505–521, 2021.
- [CM04] Alain Connes and Henri Moscovici. Rankin-Cohen brackets and the Hopf algebra of transverse geometry. Mosc. Math. J., 4(1):111–130, 2004.
- [CS17] Henri Cohen and Fredrik Strömberg. Modular forms: a classical approach, volume 179 of Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 2017.
- [DMR24] François Dumas, François Martin, and Emmanuel Royer. Differential algebras of quasi-Jacobi forms of index zero. working paper or preprint, 2024.
- [EZ85] Martin Eichler and Don Zagier. The theory of Jacobi forms, volume 55 of Prog. Math. Birkhäuser, Cham, 1985.
- [Obe14] Georg Oberdieck. A serre derivative for even weight jacobi forms, 2014.
- [Olv99] Peter J. Olver. Classical invariant theory, volume 44 of Lond. Math. Soc. Stud. Texts. Cambridge: Cambridge University Press, 1999.
- [Roy12] Emmanuel Royer. Quasimodular forms: an introduction. Ann. Math. Blaise Pascal, 19(2):297–306, 2012.
- [Ser78] Jean-Pierre Serre. A course in arithmetic. Translation of "Cours d'arithmetique". 2nd corr. print, volume 7 of Grad. Texts Math. Springer, Cham, 1978.
- [vI23] Jan-Willem M. van Ittersum. The Bloch-Okounkov theorem for congruence subgroups and Taylor coefficients of quasi-Jacobi forms. Res. Math. Sci., 10(1):45, 2023. Id/No 5.
- [Zag08] Don Zagier. Elliptic modular forms and their applications. In The 1-2-3 of modular forms. Lectures at a summer school in Nordfjordeid, Norway, June 2004, pages 1–103. Berlin: Springer, 2008.

Emmanuel Royer, CRM - CNRS – IRL3457, Université Clermont Auvergne & Université de Montréal, Montréal, Canada

Email address: emmanuel.royer@math.cnrs.fr